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We investigate analytically the anchoring of a nematic liquid crystal on a two-dimensionally grooved surface
of arbitrary shape, induced by the elastic distortions of a liquid crystal adjacent to the surface. Our theoretical
framework applied to a surface with square grooves reveals that such a surface can exhibit bistable anchoring,
while a direct extension of a well-known theory of Berreman �Phys. Rev. Lett. 28, 1683 �1972�� results in no
azimuthal anchoring in the so-called one-constant case �K1=K2=K3, with K1, K2, and K3 being the splay, twist,
and bend elastic constants, respectively�. We show under the assumption of K1=K2=K that the direction of the
bistable easy axes and the anchoring strength crucially depend on the ratios K3 /K and K24 /K, where K24 is the
saddle-splay surface elastic constant. To demonstrate the applicability of our theory to general cases and to
elucidate the effect of surface shape and the elastic constants on the properties of surface anchoring, we also
consider several specific cases of interest; one-dimensional grooves of arbitrary shape, rhombic grooves, and
surfaces possessing 2N-fold symmetry, including hexagonal grooves, and show the following: �i� The rescaled
anchoring energy f��� / f�� /2� of one-dimensional grooves, with � being the angle between the director n and
the groove direction, is independent of the groove shape. �ii� Whether two diagonal axes of rhombic grooves
can become easy axes depends sensitively on K3 /K, K24 /K and the angle � between the grooves. The angle �
yielding the maximum anchoring strength for given groove pitch and amplitude depends again on K3 /K and
K24 /K; in some cases �=0 �one-dimensional grooves�, and in other cases ��0, gives the maximum anchoring
strength. Square grooves ��=� /2� do not necessarily exhibit the largest anchoring strength. �iii� A surface
possessing 2N-fold symmetry can yield N-stable azimuthal anchoring. However, when K1=K2=K3 and N
�3, azimuthal anchoring is totally absent irrespective of the value of K24. The direction of the easy axes
depends on K3 /K, K24 /K, and whether N is even or odd.
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I. INTRODUCTION

Surface anchoring of a liquid crystal �1–3� has been
among the most important subjects of liquid crystal research.
In most practical applications including displays, liquid crys-
tals are confined in a cell made up of properly treated glass
plates. Achievement of proper anchoring is of crucial impor-
tance in accomplishing desirable performance of liquid crys-
tal devices.

The underlying mechanism of surface anchoring, together
with how it can be controlled, has been also of fundamental
interest. There has been a longstanding debate on what the
origin of surface anchoring is, in particular on rubbed poly-
mer surfaces. Intermolecular interactions between liquid
crystal molecules and polymer chains constituting the sur-
face have been identified as an important factor determining
the anchoring properties �4–6�. On the other hand, elastic
distortions of the liquid crystal adjacent to nonflat surfaces
have long been argued as the source of surface anchoring as
well, partly because of its universal nature irrespective of the
chemical properties of the surface. The importance of the

latter has been realized for the past decade because rapid
progress in nanotechnology made it possible to create arbi-
trarily patterned or grooved surfaces with submicron-scale
precision. Microscopically grooved surfaces have indeed
been shown to exhibit anchoring in numerous experimental
studies �7–15�. Anchoring properties realized by such sur-
faces include multistability �9,14�, or controllable pretilt
angle �10,11,15�.

As early as in 1972, Berreman �16� presented the first
theoretical study on surface anchoring attributed to nonflat
surface geometry and the resultant elastic distortion of a
nematic liquid crystal. With the assumption that the director
n at the surface is always tangential to the surface, he dis-
cussed how the liquid crystal is distorted on and above a
sinusoidally grooved surface. Since Berreman’s work, al-
though simple enough, captures the essence of surface an-
choring induced by the elastic distortion of the liquid crystal,
it has served as a starting point for subsequent numerous
theoretical �17–20� as well as experimental �21–23� studies
concerning the geometrical nature of surface anchoring.

However, in our recent work we argued that Berreman’s
theory is based on an invalid assumption of no azimuthal
distortions of the director field �24�. Moreover, saddle-splay
surface elasticity characterized by K24, which does not ap-
pear in Berreman’s theory because it becomes zero under the
assumption of no azimuthal distortions, has been shown to
play an important role �25,26�. The present understanding of
the relation between anchoring and surface geometry based

*fukuda.jun-ichi@aist.go.jp
†Present address: Department Electronics and Computer Engineer-

ing, Hanyang University, 17 Haengdang-Dong, Seongdong-gu,
Seoul 133-791, Korea.

PHYSICAL REVIEW E 77, 011702 �2008�

1539-3755/2008/77�1�/011702�16� ©2008 The American Physical Society011702-1

http://dx.doi.org/10.1103/PhysRevE.77.011702


on Berreman’s argument must therefore be carefully and
critically reexamined.

Our theory in Refs. �24–26�, as well as the original ver-
sion of Berreman’s theory �16�, was restricted to one-
dimensionally grooved surfaces whose height is described by
a single trigonometric function. Recently, as noted above,
two-dimensionally patterned surfaces have been attracting
interest as a type of anchoring surface. Therefore, it is worth-
while to investigate what kind of surface anchoring is in-
duced by a nonflat surface of arbitrary shape, and how elastic
constants including K24 affect the properties of such surface
anchoring, which is the aim of the present paper.

There have been only a few theoretical studies to evaluate
the anchoring properties of nonflat surfaces whose profiles
cannot be described by a single trigonometric function.
Bryan-Brown et al. �18� discussed the anchoring energy of
an orthogonally grooved surfaces, but their argument, though
essentially based on Berreman’s original theory, did not con-
tain the details of the derivation of their formula. Moreover,
their anchoring energy implies that bistable azimuthal an-
choring of square grooves appears only when K2�K3 �see
Eq. �3� for the definition of K2 and K3�, which turns out to be
wrong from our argument below. Elgeti and Schmid �20�
avoided the invalid assumption of no azimuthal distortions to
derive a general expression of the anchoring energy as a
functional of the groove height. They did not, however, dis-
cuss specific cases of interest using their formula. We also
notice that both Bryan-Brown et al. and Elgeti and Schmid
paid no attention to the contribution of surface elasticity.

In Sec. II we derive the formula of the anchoring energy
for an arbitrary surface profile. In Sec. III we apply our for-
mula to several specific cases of interest; one-dimensional
grooves of an arbitrary shape �Sec. III A�, square grooves
�Sec. III B�, rhombic grooves �Sec. III C�, and general
grooves of 2N-fold symmetry including hexagonal grooves
�Sec. III D�. We conclude this paper in Sec. IV.

II. THEORETICAL ARGUMENT

We consider a grooved surface whose height ��x ,y� with
respect to the plane z=0 is described by

��x,y� = �
i=1

N

�i�x,y� �1�

with

�i�x,y� = Ai sin�qi · r� + �i� . �2�

Here we have employed the abbreviation r�= �x ,y� and the
wave number of the surface groove qi= �qix ,qiy� lies parallel
to the z=0 plane. Without loss of generality, we can assume
qi�q j for i� j. Any ��x ,y� can be expressed as a Fourier
series �1� with Eq. �2�, as long as ��x ,y� is a single-valued,
piecewise smooth and continuous function. When no period-
icity in ��x ,y� can be assumed, the sum �i=1

N in Eq. �1� and
the following equations should be understood as an integral
with respect to q. We have denoted the amplitude of the
groove by Ai, and �i characterizes the phase of the groove.
We assume Ai�qi��1, that is, the slope of the groove is small
enough.

A nematic liquid crystal is filled in a semi-infinite region
z���x ,y�. We denote the average orientation of the nematic
liquid crystal by the director n, and the Frank elastic energy
in terms of n is written as �1,27,28�

F =
1

2
� dr�K1�� · n�2 + K2�n · � � n�2 + K3�n � � � n�2

− Ks � · �n � · n + n � � � n�� . �3�

Here K1, K2, and K3 are the bulk elastic constants associated
with splay, twist, and bend deformations, respectively. The
last term in Eq. �3� is referred to as the surfacelike elastic
term because it is converted to a surface integral. We have
introduced Ks�K2+K24, where K24 is the saddle-splay elas-
tic constant �27–29�.

Here we do not consider the term K13� · �n� ·n�, because
this term renders the problem of finding the profile of n
minimizing F ill-defined �27,30�, and even the existence of
this term has been questioned �31�.

From their molecular theory, Nehring and Saupe �29�
showed a relation K24= �K1−K2� /2, or Ks= �K1+K2� /2.
However, experimental measurements do not seem to sup-
port it �32�, and Yokoyama �31� argued that this equality
should be replaced by an inequality

K24 � �K1 − K2�/2 or Ks � �K1 + K2�/2. �4�

Therefore, in the following, we treat Ks or K24 as an inde-
pendent parameter. We also notice that for the elastic energy
F to be positive-definite,

K3 � 0, 0 	 Ks 	 2K1, Ks 	 2K2 �5�

must be fulfilled �28,33�.
We assume uniform alignment at infinity, z= +
, and take

the x direction parallel to n at z= +
. When the distortion of
the nematic liquid crystal from the uniform alignment along
the x direction is small enough, it is characterized by ny and
nz that satisfy �ny��1 and �nz��1. Then we are allowed to
retain up to second-order terms in ny and nz in the Frank
elastic energy, which reads as

F =
1

2
� dr	K1��yny + �znz�2 + K2��ynz − �zny�2

+ K3���xny�2 + ��xnz�2� − 2Ks��yny�znz − �ynz�zny�
 .

�6�

We assume planer degenerate anchoring at the grooved sur-
face; i.e., the director n is always perpendicular to the sur-
face normal �, but there is no preferred direction as long as
n ·�=0 is fulfilled. Since � � ��� /�x ,�� /�y ,−1�, the condition
of planar degenerate anchoring at the surface is explicitly
written as

��

�x
+ ny

��

�y
− nz = 0. �7�

As we discussed in our previous study �24�, Eq. �7� does not
give any boundary condition for ny because ny �� /�y gives a
contribution higher order in Ai�qi�. The leading-order term in
Eq. �7� yields a boundary condition for nz that reads
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nz =
��

�x
= �

i=1

N

Aiqix cos�qi · r� + �i� . �8�

We also showed �24� that the variational principle applied to
the Frank elastic energy �6� yields the Euler-Lagrange equa-
tions in the bulk:

0 = − K1�y��yny + �znz� + K2�z��ynz − �zny� − K3�x
2ny , �9�

0 = − K1�z��yny + �znz� − K2�y��ynz − �zny� − K3�x
2nz,

�10�

together with an additional boundary condition at the surface
�25,26�,

Ks�ynz + K2��zny − �ynz� = 0. �11�

The derivation of Eqs. �9� and �10� is straightforward. Equa-
tion �11� arises from the fact that nz at the boundary is fixed
�see Eq. �8��, that is, infinitesimal variation of nz is not al-
lowed; �nz=0. On the other hand, as mentioned above, no
condition is imposed on ny at the surface, i.e., �ny �0.

Thus, to find the equilibrium director profile at and above
the grooved surface, we must solve Eqs. �9� and �10� under
the boundary conditions �8� and �11�. Since those equations
are linear in ny and nz, superposition principle is readily ap-
plied; when the solution for the surface described by one
sinusoidal mode is known, the final solution is given just by
the sum of those individual solutions. We already know that
when Eq. �8� is replaced by a single sinusoidal function, nz
=Aiqix cos�qi ·r�+�i�, the solution is represented, in the
present terminology, by �25,26�

nz
�i� = Aiqix cos�qi · r� + �i��e−ki

�1�z +
Ks

K3

qiy
2

qix
2 �e−ki

�1�z − e−ki
�2�z� ,

�12�

ny
�i� = Aiqix sin�qi · r� + �i�� qiy

ki
�1�e

−ki
�1�z +

Ks

K3

qiy
2

qix
2

�� qiy

ki
�1�e

−ki
�1�z −

ki
�2�

qiy
e−ki

�2�z� , �13�

where we have defined ki
�j���qiy

2 + �K3 /Kj�qix
2 �j=1,2�. We

note that Eqs. �12� and �13� have been already derived by
Wolff et al. �34�, although they did not discuss the explicit
form of the anchoring energy we shall give below, and their
argument was restricted to one-dimensional grooves. As
noted above, the final solution to Eqs. �9� and �10� under the
boundary conditions �8� and �11� is expressed as nz=�inz

�i�,
and ny =�iny

�i�.
Substituting the obtained director profile into Eq. �6�, we

find the Frank elastic energy due to the distortion induced by
the grooved surface, or the anchoring energy of the grooved
surface. Here again the superposition principle can be ap-
plied, and the resultant anchoring energy is

f =
1

4�
i=1

N

Ai
2 qix

2

ki
�1���K3qix

2 � + Ksqiy
2 �2 −

Ks

K3

ki
�1�ki

�2� − qiy
2

qix
2 � ,

�14�

per unit surface area.
Equation �14� is a complicated function to deal with ana-

lytically. Therefore, in some of the following discussions, we
make a simplifying assumption, K1=K2=K. Then Eq. �14�
reads as

f =
1

4�
i=1

N

Ai
2 qix

2

ki
�1��K3qix

2 + Ks�2 −
Ks

K
qiy

2 � . �15�

Equation �15�, or �14�, serves as a starting point in the fol-
lowing discussions on the anchoring properties of various
surfaces.

III. DISCUSSION

In this section, using the anchoring energy derived in the
preceding section, we discuss several specific cases of inter-
est; one-dimensional grooves with arbitrary shape, square
grooves, rhombic grooves, and two-dimensional grooves
with 2N-fold symmetry including hexagonal grooves.

A. One-dimensionally grooved surface with arbitrary shape

Height profiles of any one-dimensionally grooved surface
can be described in terms of Fourier series with wave vectors
pointing along the same direction perpendicular to the
grooves. We denote such a set of parallel wave vectors as
	qi
= 	qi�sin � , cos ��
, in which � describes the angle be-
tween the uniform director n at infinity and the direction of
the groove. Here we do not assume K1=K2 and the anchor-
ing energy, Eq. �14�, is rewritten as

f =
1

4
��

i=1

N

Ai
2qi

3�K3
sin4 �

g1���
+ Ks

cos2 � sin2 �

g1���

��2 −
Ks

K3

g1���g2��� − cos2 �

sin2 �
� , �16�

where we have defined gi���=�cos2 �+ �K3 /Ki�sin2 � �i
=1,2�. Since in Eq. �16� the shape of the surface enters only
through the sum �i=1

N Ai
2qi

3, the reduced anchoring energy
f��� / f��=� /2� is independent of the shape of the surface.

The surface anchoring energy in the literature is often
written in a Rapini-Papoular form as �35� f = �1 /2�W sin2 �
or f = �1 /2�W�2 for small �. From Eq. �16�, we have

W =
1

2
��

i=1

N

Ai
2qi

3Ks�2 −
1

2
Ks

K1 + K2

K1K2
 . �17�

From Eq. �17�, we find that surfacelike elasticity plays a
decisive role in the Rapini-Papoular anchoring strength W,
and W vanishes when the contribution from the surfacelike
elasticity is absent �Ks=0�, or Ks=4K1K2 / �K1+K2�. To see
the effect of surfacelike elasticity, we plot in Fig. 1 the re-
duced anchoring energy f��� / f�� /2� for various Ks. In Fig.
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1 we have considered a simplified one-constant case K1
=K2=K3=K. The absence of surface anchoring in the
Rapini-Papoular sense in the case of Ks=0 or 2K is clearly
seen, and the original result of Berreman, f���sin2 �, is
recovered when Ks=K �26�.

B. Surface with square grooves

We consider a surface with two-dimensional grooves of
square shape. The surface profile can be described using two
orthogonal wave vectors of equal length, i.e., q1 and q2 with
q1 ·q2=0 and �q1�= �q2�=q. We set the amplitude of those or-
thogonal grooves to be equal, that is, A1=A2=A. We again
introduce an angle � characterizing the direction of one of
the orthogonal grooves with respect to n, and write q1,2 as
q1=q�sin � , cos �� and q2=q�cos � ,−sin ��. The geometry
of our setup is illustrated in Fig. 2.

Here we discuss a simplified case with K1=K2=K and
define k3�K3 /K and ks�Ks /K. The inequality �5� now
reads k3�0 and 0	ks	2. The anchoring energy, Eq. �15�,
then reads as

f =
1

4
KA2q3� k3 sin4 � + ks�2 − ks�cos2 � sin2 �

�cos2 � + k3 sin2 �

+
k3 cos4 � + ks�2 − ks�sin2 � cos2 �

�sin2 � + k3 cos2 �
 . �18�

Obviously, the value of f for given k3 and � is the same for
ks=1±�, where ���	1. Therefore, unless otherwise stated,
we will restrict our discussion to ks�1 �which is also con-
sistent with Eq. �4��. From Eq. �18�, one readily finds that
�f /��=0 at �=n� /4, with n being an arbitrary integer. Now
we discuss whether f attains its local minimum or maximum
at �=n� /4. We define W�����2f /��2. When �f /��=0 and
W����0, the angle � becomes stable �or metastable�. From
Eq. �18�, we find

W�0� =
1

4
KA2q3�2ks�2 − ks� +

2ks�2 − ks� − �3k3 + 1�
�k3

 ,

�19�

W��/4� =
1

4
KA2q3 1

�2�1 + k3�5/2 �k3�3k3
2 + 10k3 + 19�

− ks�2 − ks��5k3
2 + 22k3 + 5�� . �20�

It is obvious from symmetry that W�0�=W�m� /2� and
W�� /4�=W�� /4+m� /2�, with m being an arbitrary integer.
From cumbersome calculations we do not present here, it can
be shown that W�0��0 and W�� /4��0 cannot be simulta-
neously satisfied. Therefore, apart from the special cases
with W�0�=0 or W�� /4�=0, we must consider the following
three cases: �i� W�0��0 and W�� /4��0, �ii� W�0��0 and
W�� /4��0, and �iii� W�0��0 and W�� /4��0. In cases �i�
and �ii� our system becomes stable when �=� /4 and �=0,
respectively. Two easy axes are thus along the diagonal di-
rections in case �i�, and along the sides of squares in case �ii�.
In case �iii�, one can show that there exists an angle �i in the
range �0,� /4� which satisfies W��i�=0. The minima of the
anchoring energy f are then located at �= ±�i+m� /2, and
therefore the system has four easy axes along �= ±�i and
� /2±�i �36�.

To see which case happens for given k3 and ks, we plot a
phase diagram in Fig. 3, together with schematic illustrations
of the easy axes for cases �i�, �ii�, and �iii�. We find from Fig.
3 that when k3�1, case �i� is always realized, and thus the
easy directions are along the diagonal directions. When k3
�1, which case holds depends on ks, and for ks=1, we ob-
serve case �ii� for all k3�1. Case �iii� is found in a very
narrow region in the phase diagram. We note that for most of
the rodlike nematic liquid crystals, K3 is larger than K1 and
K2 �1�, and therefore k3�1. Hence, in most practical situa-
tions case �i� is likely to be observed.

We notice also that Berreman’s original theory corre-
sponds to choosing ks=1 as noted in Ref. �26� and Sec. III A.
In the one-constant case �k3=1� together with ks=1, one can
easily find from Eq. �18� that the anchoring energy becomes
f = �1 /4�KA2q3�cos2 �+sin2 ��2=const. Thus, in the case of
k3=1 and ks=1 �marked by a dot in Fig. 3�, no azimuthal
anchoring is present, or in other words, naive extension of

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

FIG. 1. �Color online� Plot of the reduced anchoring energies
f��� / f�� /2� for various Ks. Here we assume K1=K2=K3=K.

x

y

φ

q

q

2

1

n

FIG. 2. �Color online� Illustration of the geometry of the square
grooves. Thin green lines represent the direction of easy axes ��
=� /4, 3� /4�. The angle � can be understood as the angle between
the director n �or the x axis� and the direction of one of the grooves
�represented by thin solid black lines�, as well as the angle between
q1 and the y axis.
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Berreman’s theory to square grooves results in no azimuthal
anchoring in the one-constant case �K1=K2=K3�, This marks
a sharp contrast to our result accounting for azimuthal an-
choring even in the one-constant case unless ks=1.

We further comment that the result of Bryan-Brown et al.
�Eq. �2� of Ref. �18�� in the case of square grooves is equal to
our Eq. �18� when K1=K2 and ks=1. However, when K1
�K2, their result does not agree with what is expected from
our general formula, Eq. �14�, whichever Ks is chosen. Con-
sidering the additional fact that surface elasticity does not
appear in their argument, we conclude that the derivation of
the anchoring energy by Bryan-Brown et al. �18� is based on
some erroneous argument.

To observe the behavior of the anchoring energy in a
clearer manner, In Fig. 4, we plot the � dependence of the
anchoring energy for various k3 and ks. For the clarity of the
presentation, we have introduced a rescaled anchoring en-

ergy f̃��� defined by

1

4
KA2q3 f̃��� = f��� −

1

2�
�

0

2�

f��� . �21�

For k3=1.5�1 �Fig. 4�a��, the minima are located at �
=� /4 and 3� /4 �corresponding to case �i��, irrespective of
the value of ks. On the other hand, for k3=0.7�1 �Fig. 4�b��,
the position of the minima depends on ks; when ks=1 they
are located at �=0 and � /2, while for other values of ks at
�=� /4 and 3� /4. Figure 4�c� corresponds to case �iii�, in

which �=0 and �=� /4 are at the local maximum of f̃ and
the minima are found in between. Those behaviors are in
agreement with the phase diagram, Fig. 3.

To conclude this section we notice from Eq. �20� that the
anchoring strength W�� /4� in case �i� for fixed k3 is the
largest when ks=2 �or 0�. On the other hand, in case �ii�
�k3�1� the largest anchoring strength W�0� �Eq. �19�� is

achieved when ks=1. The plot of the anchoring strengths
W�0� and W�� /4� as a function of k3 and ks in Fig. 5, as well
as the behavior of the anchoring energy in Fig. 4, agrees with
the argument above.

(i) (ii) (iii)

(i)

(ii)

(iii)

FIG. 3. �Color online� Phase diagram of a surface with square
grooves. Schematic illustrations of the easy axes are also given. At
the point �k3=1, ks=1� marked by a dot, no azimuthal anchoring is
present.
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FIG. 4. �Color online� Plot of the rescaled anchoring energy

f̃��� for �a� k3=1.5, �b� k3=0.7, and �c� k3=0.1 and ks=1.8.

FIG. 5. �Color online� Plot of the anchoring strengths W�0� and
W�� /4� as a function of k3 and ks for a surface with square grooves.
Only the regions where W�0��0 or W�� /4��0 are shown.
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C. Surface with rhombic grooves

We discuss here the properties of anchoring on a surface
with nonorthogonal grooves. We restrict our discussion to
two-dimensional grooves with equal pitch ��q1�= �q2�=q� and
amplitude �A1=A2=A�. Therefore, we consider grooves with
rhombic shape. We denote the angle between grooves by �
and then q1 ·q2=q2 cos �. The square grooves discussed in
Sec. III B correspond to the case with �=� /2. Without loss
of generality, we can impose the condition 0	�	� /2.

We again let � describe the direction between one of the
grooves and n, and then the wave vectors q1,2 are written as
q1=q�sin � , cos �� and q2=q�sin��−�� , cos��−��� �note
that the definition of q2 is different from that in Sec. III B;
the present definition corresponds to −q2 in Sec. III B�. Fig-
ure 6 illustrates the geometry of the present setup.

For the clarity of the following argument, we introduce a
different angle �̃=�−� /2, which can be understood as an
angle between n and one of the diagonal lines of the rhombi.
Again after a simplifying assumption of K1=K2=K, the an-
choring energy �14� becomes

f =
1

4
KA2q3� k3 sin4��̃ +

�

2
 + ks�2 − ks�cos2��̃ +

�

2
sin2��̃ +

�

2


�cos2��̃ +
�

2
 + k3 sin2��̃ +

�

2
 +

k3 sin4��̃ −
�

2
 + ks�2 − ks�cos2��̃ −

�

2
sin2��̃ −

�

2


�cos2��̃ −
�

2
 + k3 sin2��̃ −

�

2
 � .

�22�

Here again k3�K3 /K and ks�Ks /K. It is easy to verify that
at �̃=n� /2 or �=n� /2+� /2 �with n being an integer�,
�f /��=�f /��̃=0. It is important to notice, however, that it
does not imply that the extrema of f are found only at �̃
=n� /2; as we have seen in Sec. III B, for �=� /2, �f /��

=0 at �=n� /2 ��̃=n� /2−� /4� as well as at �=n� /2
+� /4 ��̃=n� /2�.

Since the anchoring energy �22� is still a highly compli-
cated function of �̃, k3, ks, and �, we will restrict our dis-
cussion here to whether the axes �̃=0 and �̃=� /2 along the
diagonal directions are stable �metastable� or unstable. We
note that when both �̃=0 and �̃=� /2 are unstable, there
should be easy axes along different directions as in the cases
�ii� and �iii� in the preceding section. In those cases, with the
values of k3, ks, and � fixed, we can calculate the direction �̃
of the easy axes numerically, which we will not do here.

In the present case, W��̃�=�2f /��̃2 at �̃=0 becomes

W�0� =

1

4
KA2q3

�cos2�

2
+ k3 sin2�

2
5/2�2k3 sin2�

2
�12 + �15k3 − 31�

�sin2�

2
+ 2�k3 − 1��3k3 − 14�sin4�

2

− 9�k3 − 1�2 sin6�

2
 + 2ks�2 − ks��2 − �k3 + 15�sin2�

2

− �17k3 − 33�sin4�

2
− �k3 − 1��7k3 − 29�sin6�

2

+ 9�k3 − 1�2 sin8�

2
� . �23�

We note that W�0,��=W�� /2,�−�� from symmetry, or
equivalently,

W�0,sin��/2�� = W��/2,cos��/2�� . �24�

For the following discussion, we also present the values of
W�0� at ks=0, 1, and 2:

�W�0��ks=0 or 2 =

1

4
KA2q3

�cos2�

2
+ k3 sin2�

2
5/2

�2k3 sin2�

2
�3 sin4�

2
�2 − 3 sin2�

2
k3

2

+ sin2�

2
�18 sin4�

2
− 34 sin2�

2
+ 15k3

+ �− 9 sin6�

2
+ 28 sin4�

2
− 31 sin2�

2
+ 12� ,

�25�

�W�0��ks=1 =

1

4
KA2q3

�cos2�

2
+ k3 sin2�

2
3/2�6 sin4�

2
�2 − 3 sin2�

2
k3

2

+ 2 sin2�

2
�18 sin4�

2
− 26 sin2�

2
+ 9k3

− 18 sin6�

2
+ 40 sin4�

2
− 26 sin2�

2
+ 4� , �26�
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and again the values of W�� /2� at ks=0, 1, and 2 can be
deduced from Eqs. �25�, �26�, and �24�.

We can show from Eqs. �25� and �26� that when �
	2 arcsin��2 /3�, or �	56.25° in degrees, W�0��0 irre-
spective of the values of k3 and ks. The detail of its proof is
given in Appendix A. When ��56.25°, it depends on k3 and
ks whether W�0� is positive or negative, as we have already
seen in Sec. III B for �=� /2. In Fig. 7, we show different
phase diagrams for �=� /3 �60°� and 5� /12 �75°�. As we
can readily expect, the size of the region for negative W�0�
becomes smaller with smaller �.

The behavior of W�� /2� can be classified to several re-
gimes depending on �, which are summarized in Fig. 8. �i�
When 2 arccos��6 /3���	� /2 �or 70.53° ��	90° in de-
grees�, W�� /2� can be positive when k3 is larger than a cer-
tain value, irrespective of the value of ks �Fig. 8�a��. Notice

x

y

n
α

φ

φ~

q1q2

FIG. 6. �Color online� Illustration of the geometry of a surface
with rhombic grooves. Thin green lines, diagonal lines of the
rhombi, correspond to �̃=0 or �̃=� /2.

(a)

(b)

FIG. 7. �Color online� Phase diagrams for W�0� of rhombic
grooves with �a� �=� /3 and �b� �=5� /12.

(a)(a)(a)(a)

(b)(b)(b)(b)

(c)(c)(c)(c)

(d)(d)(d)(d)

FIG. 8. �Color online� Phase diagrams for W�� /2� of rhombic
grooves with �a� �=5� /12, �b� �=3� /8, �c� �=� /8, and �d� �
=0. Notice that in �c�, there exist a very narrow region around k3

�0, in which W�� /2��0.
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that when ks=0 or 2, W�� /2��0 is always satisfied. �ii�
When 2 arccos��546+52�3 /26����2 arccos��6 /3� �or
28.13° ���70.53° in degrees�, there exists a certain range
of ks in which W�� /2��0 irrespective of the value of k3.
Otherwise, W�� /2��0 in a certain finite range of k3 �Fig.
8�b��. �iii� When 0° ���28.13°, irrespective of the value of
ks, there exists a certain finite range of k3 in which W�� /2�
�0 �Fig. 8�c��. Mathematical details to arrive at those results
are given in Appendix B.

Figure 8�d� presents a limiting case of �=0. For �=0,
W�� /2� is explicitly written as

�W��/2���=0 = −
2

�k3

�3k3 − 1 + 2�ks − 1�2� , �27�

and therefore W�� /2� can be positive in a certain region of
the phase diagram included in k3�1 /3 and �ks−1���2 /2.
This result looks somewhat surprising, because in fact �=0
corresponds to a “one-dimensional” groove, and W�� /2�
�0 implies that director orientation perpendicular to the
one-dimensional groove can be �meta�stable rather than un-
stable. As has already been pointed out in Ref. �34�, positive
W�� /2� in the case of one-dimensional groove can be under-
stood as follows: a nematic liquid crystal oriented perpen-
dicular to the grooves involves bend and splay deformations,
but no twist deformation. Saddle-splay surface elastic energy
is also zero. Deviation of the nematic orientation from per-
pendicular alignment yields twist deformation, nonzero
saddle-splay surface elastic energy, and reduced bend and
splay elastic energies. However, if k3 is small enough, the
reduction in the bend elastic energy is too small to compen-
sate for the twist elastic energy and the saddle-splay surface
elastic energy, resulting in the increase in the total elastic
energy, which implies W�� /2��0. It is readily seen from
Eq. �22� with �=0, the increase in the elastic energy other

than the bend energy is proportional to ks�2−ks�, and there-
fore the above qualitative argument holds only when ks�2
−ks� is large enough, that is, �ks−1� is small enough.

We conclude this section by finding out which � gives the
largest anchoring strength W�0� for given k3 and ks. For this
purpose, we calculate �W�0� /�� to obtain

�W�0�
��

=
1

4
KA2q3

cos
�

2
sin

�

2
c��,k3,ks�

�cos2�

2
+ k3 sin2�

2
7/2 , �28�

with

c��,k3,ks� = k3�24 + 8�3k3 − 11�sin2�

2
+ �21k3 − 137��k3 − 1�

�sin4�

2
+ 2�k3 − 1�2�3k3 − 50�sin6�

2

− 27�k3 − 1�3sin8�

2
 + ks�2 − ks��4�3k3 − 5�

+ �3k3
2 − 26k3 + 87�sin2�

2
− �k3 − 1��25k3 − 141�

�sin4�

2
− 7�k3 − 1�2�7k3 − 101�sin6�

2

+ 27�k3 − 1�3sin8�

2
 . �29�

FIG. 9. �Color online� Implicit plot of c�� ,k3,ks�=0 or
�W�0� /��=0 for 0��	� /2.

(a)

(b)

FIG. 10. �Color online� Plots of W�0� as a function of � for �a�
k3=1 and �b� k3=2.
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It is clear from Eq. �28� that �=0 yields �W�0� /��=0. As
we shall see, �=0, i.e., one-dimensional grooves, gives
maximum W�0� in a certain region in the �k3 ,ks� space, while
outside the region it does not; ��0 result in maximum
W�0�.

In Fig. 9, we present an implicit plot of c�� ,k3,ks�=0,
that is, we plot � in 0��	� /2 that gives �W�0� /��=0, as
a function of k3 and ks. Figure 9 clearly demonstrates that
orthogonal grooves, �=� /2, does not necessarily result in
maximum anchoring strength W�0�. In Fig. 10, we plot W�0�
as a function of � for several specific values of k3 and ks. In
the case of �k3 ,ks�= �1,1�, for which ��0 does not yield
�W�0� /��=0 as seen in Fig. 9, W�0� indeed attains its maxi-
mum at �=0. On the other hand, in other cases presented in
Fig. 10, the maximum of W�0� is at � not equal to zero,
which indicates that the value of � given by the manifold in
Fig. 9 does yield the maximum, not the minimum, of W�0�.
Thus, how to achieve largest anchoring strength W�0� by
rhombic grooves can be deduced from Fig. 9. One can also
find from Fig. 10 that when ��0 gives the maximum of
W�0�, W�0� becomes larger for larger �ks−1�. Therefore to
attain large anchoring strength by rhombic grooves, one
should use a nematic material with large K24.

D. Hexagonally grooved surface and beyond:
Surfaces with 2N-fold symmetry

Now we consider a grooved surface possessing 2N-fold
symmetry, in which the set of wave vectors 	qm
 and
	−qm
 with m=0,1 , . . . ,m−1 are given by qm=q�sin��
+m� /N� , cos��+m� /N��, and the amplitudes of those

modulations are equal, A=A1=A2=¯ �see Fig. 11�. Square
grooves discussed in Sec. III B correspond to N=2. Again �
characterizes the orientation of the surface groove with re-
spect to n. We assume here K1=K2=K, and then the anchor-
ing energy �15� is expressed in terms of k3=K3 /K and ks
=Ks /K as

f =
1

4
KA2q3�

m=0

N−1 k3 sin4�� +
m�

N
 + ks�2 − ks�cos2�� +

m�

N
sin2�� +

m�

N


�cos2�� +
m�

N
 + k3 sin2�� +

m�

N
 . �30�

We first discuss a specific case of a hexagonally grooved surface �N=3� in detail. We notice that when k3=1, or K3

=K�=K1=K2�, f is independent of � irrespective of the value of ks, that is, the surface shows no azimuthal anchoring. This
holds for arbitrary N larger than or equal to 3, and its derivation is given below.

For K3�K, it is not difficult to show that �f /��=0, at �=n� /6, with n being an integer. As in Sec. III B, we define
W�����2f /��2 and discuss whether f�n� /6� is the minimum or maximum of f . From Eq. �30� with N=3, we obtain

W�0� =
1

4
KA2q3�2ks�2 − ks� +

− ks�2 − ks��19 + 210k3 + 27k3
2� − 27k3�k3 − 1��3k3 + 5�

4�1 + 3k3�5/2  , �31�

W��/6� =
1

4
KA2q3�2ks�2 − ks� − �3k3 + 1�

�k3

−
ks�2 − ks��19k3

2 + 210k3 + 27� − k3�15k3
2 + 122k3 + 375�

4�3 + k3�5/2  . �32�

(a)

x

y

φ

n

q1

q2

q3
-q1

-q2

-q3

(b)

x

y

φ

n

q1

q2

q3

q4
-q1

-q2

-q3

-q4

FIG. 11. �Color online� Illustration of the geometry of grooved
surfaces with 2N-fold symmetry: �a� N=3 �hexagonal� and �b� N
=4. The angle � can be understood as the angle between the direc-
tor n �or the x axis� and the direction of one of the grooves �repre-
sented by thin solid black lines�, as well as the angle between q1

and the y axis.
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From symmetry it is clear that W�0�=W�m� /3� and
W�� /6�=W�� /6+m� /3�, with m being an arbitrary integer.
It is easily verified that W�0�=W�� /6�=0 when k3=1, which
is a natural consequence of the absence of anchoring in the
case of k3=1 as noted above. We also find, with the aid of the
algebraic program Maple 11, that W�0��0 and W�� /6��0
cannot be simultaneously satisfied. Therefore, just like the
square grooves discussed in Sec. III B, we must consider the
following three cases: �i� W�0��0 and W�� /6��0, �ii�
W�0��0 and W�� /6��0, and �iii� W�0��0 and W�� /6�
�0. In case �i� three easy axes are along the directions �
=� /6, � /2, and 5� /6, and in case �ii� along �=0, � /3, and
2� /3. In case �iii�, there exists an angle �i in the range
�0,� /6� which satisfies W��i�=0. The minima of the an-
choring energy f are then located at �= ±�i+m� /3, and
therefore the system has four easy axes along �= ±�i,
� /3±�i, and 2� /3±�i �36�.

In Fig. 12, we plot a phase diagram of hexagonal grooves
together with schematic illustrations of the easy axes for
cases �i�, �ii�, and �iii�. When k3�1, we always find case �i�
in the phase diagram. When k3�1, as in the case of square
grooves it depends on ks which case is realized, but a quali-
tative form of the phase diagram is somewhat different from
that of square grooves. One finds a line k3=1 separating the
region �i� and �ii�, which is absent in the phase diagram of
square grooves, and on which no azimuthal anchoring is
present as noted above. For ks=1, we observe case �i� irre-
spective of the value of k3. Case �iii� is realized in a very
narrow region in the phase diagram. Again case �i� is likely
to be observed because for most rodlike nematic liquid crys-
tal k3�1.

We plot in Fig. 13 the � dependence of the anchoring
energy for various k3 and ks. Here again we use the rescaled

anchoring energy f̃��� defined in Eq. �21�. For k3=1.5�1
�Fig. 13�a��, the minima of f are found at �=� /6, � /2, and
5� /6 �corresponding to case �i��, irrespective of the value of
ks. For k3=0.7�1, on the other hand, it depends on Ks where

the minima of f are located �Fig. 13�b��; when ks=1 the
minima are at �=� /6, � /2, and 5� /6, while for other val-
ues of ks the minima are at �=0, � /3, and 2� /3. Figure
13�c� corresponds to case �iii�. Those behaviors of the an-
choring energy are consistent with the phase diagram, Fig.
12.

Figure 14 shows the plot of the anchoring strengths W�0�
and W�� /6� as a function of k3 and ks. We find from Fig. 14

(i) (ii) (iii)

(i)

(ii)

(iii)

(i)

FIG. 12. �Color online� Phase diagram of a surface with hex-
agonal grooves. Schematic illustrations of the easy axes are also
given. On the vertical line k3=1, no azimuthal anchoring exists.
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(c)

FIG. 13. �Color online� Plot of the rescaled anchoring energy

f̃��� for �a� k3=1.5, �b� k3=0.7, and �c� k3=0.02 and ks=1.8.

FIG. 14. �Color online� Plot of the anchoring strengths W�0� and
W�� /6� as a function of k3 and ks for a surface with hexagonal
grooves. Only the regions where W�0��0 or W�� /6��0 are
shown.
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that in the region where W�0��0, W�0� becomes largest for
fixed k3 when ks=2 �or 0�. On the other hand, which ks yields
largest W�� /6� depends on k3; ks=2 �or 0� when k3�1, and
ks=1 when k3�1. The absence of surface anchoring when
k3=1 is also seen from Fig. 14.

We conclude this section by noticing that we can show the
following for general N:

�i� The anchoring energy f , Eq. �30�, exhibits its extrema
��f /��=0� at �=n� /2N, with n being an arbitrary integer.
This holds irrespective of whether K1=K2 or not. Its deriva-
tion is given in Appendix C.

�ii� When K1=K2=K and �k3−1�= �K3 /K−1��1, f can be
written, apart from an uninteresting constant independent of
�, as

f =
1

4
KA2q3C�N��k3 − 1�N−2�k3 − ks�2 − ks��cos 2N�

+ O„�k3 − 1�N−1
… , �33�

for ks�2−ks��1. In Eq. �33�, we have defined a positive
constant C�N��N�2N−5� ! !23�N−1��N−2�! that depends
only on N. When ks�2−ks�=1, Eq. �33� is replaced by

f =
1

4
KA2q3 C�N�

2�N − 1�
�k3 − 1�N−1 cos 2N� + O„�k3 − 1�N

… .

�34�

In particular, when k3=1 and N�3, Eq. �33� and �34� indi-
cates, as we have stated above without giving a proof, that f
is independent of �; the surface exhibits no azimuthal an-

choring. We give the proof of Eqs. �33� and �34� in Appendix
D.

�iii� Using the previous results �33� and �34�, we can in-
vestigate the direction of the easy axes �or the location of the
minima in f�, in the case of sufficiently small �k3−1�. From
Eq. �33�, when k3�1, the easy axes are along �= �2n
+1�� /2N irrespective of N, with n being an arbitrary integer
�note that k3−ks�2−ks� in Eq. �33� is positive�. On the other
hand, the direction of the easy axes depends sensitively on N
and ks when k3�1, as we have already seen in the cases of
N=2 and 3. When ks�2−ks� is not close to 1 �that is, ks itself
is not close to 1�, k3−ks�2−ks� can be assumed positive.
Then from Eq. �33� they are along �= �2n+1�� /2N for even
N and �=n� /N for odd N. When ks�2−ks��1 �i.e., ks�1�,
the positiveness of k3−ks�2−ks� in Eq. �33� is no longer as-
sumed, and in the case of ks�2−ks�=1, we must use Eq. �34�;
the easy axes are along �= �2n+1�� /2N for odd N and �
=n� /N for even N, opposite to what we have seen above
when ks is not close to 1.

We plot in Figs. 15 and 16, the rescaled anchoring energy
defined by Eq. �21� for N=4 �Fig. 15� and N=5 �Fig. 16�. In
Figs. 15 and 16, we have chosen k3=1.1 or 0.9, and ks=1 or

2. When k3=1.1�0, the minima of f̃ are located at �= �2n
+1� /8� �N=4�, or at �= �2n+1� /10� �N=5�, with n being
an arbitrary integer, irrespective of whether ks=1 or 2. On
the other hand, in the case of k3=0.9�1, the location of the

minima of f̃ depends on the value of ks and whether N is
even or odd. The behavior of the anchoring energy found in
Figs. 15 and 16 agrees with the argument above.

(a)

(b)

FIG. 15. �Color online� Plot of the rescaled anchoring energy

f̃��� for N=4 and �a� ks=1, and �b� ks=2.

(a)

(b)

FIG. 16. �Color online� Plot of the rescaled anchoring energy

f̃��� for N=5 and �a� ks=1, and �b� ks=2.
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IV. CONCLUSION

In our previous work �24–26� we argued that the pioneer-
ing study of Berreman on the surface anchoring of a sinusoi-
dally grooved surface should be critically reexamined. In this
paper we extended our theory to the anchoring of a nonflat
surface of general shape. We considered the elastic distortion
of the director field due to the undulation of the surface im-
posing local planar degenerate anchoring, and derived an
analytic expression for the Frank elastic energy of the dis-
torted nematic liquid crystal, or the anchoring energy due to
a nonflat surface of arbitrary shape with sufficiently small
surface slopes.

First we examined the anchoring energy of a one-
dimensionally grooved surface. We showed that the reduced
anchoring energy f��� / f�� /2� is independent of the shape of
the surface. The previous findings for sinusoidal surfaces,
therefore, hold for one-dimensional grooves of any shape.
For example, in a simplified one-constant case �K1=K2=K3

=K�, the anchoring strength of the Rapini-Papoular sense
becomes zero when Ks=0 or 2K �that is, �K24�=K�, In that
case the anchoring energy is proportional to sin4 �. Berre-
man’s original result, f���sin2 � is correct only when Ks

=K �or K24=0�.
We extended our theory and applied it to two-dimen-

sionally grooved surfaces. In a simple case of square grooves
together with an assumption of K1=K2=K, we demonstrated
that the direction of the easy axes depends crucially on k3
�K3 /K and ks�Ks /K. In the case of k3�1, the two diago-
nal directions always become stable, which yields bistability,
except when ks=1. When k3�1, the direction of the easy
axes is determined by ks and k3: Two easy axes can be along
the diagonal lines or the sides of the squares depending on ks
and k3, and even four easy axes can exist in some extreme
cases. For fixed k3, we also showed that when the easy axes
are along the diagonal directions, ks=0 or 2 yields the largest
anchoring strength in the Rapini-Papoular sense. On the
other hand, maximum anchoring strength is achieved at ks
=1 when the easy axes are along the sides of the squares.

We further considered how a surface with rhombic
grooves behaves and examined the stability and the anchor-
ing strength of the axes along the diagonal directions. It was
found that the longer diagonal axis ��̃=0 in the notation of
the text� is stable irrespective of the values of k3 and ks, when
�, the angle between the sides of the rhombi, is smaller than
56.25°. The size of the region in the �k3 ,ks� space in which
the longer diagonal axis becomes unstable is smaller as �
approaches 56.25° from above. The stability of the shorter
diagonal axis ��̃=� /2� depends on k3, ks, and � in a highly
complicated manner. Irrespective of � there exists a certain
set of k3 and ks which results in a �meta�stable shorter diag-
onal axis, even when �=0, i.e., a shorter diagonal axis is
along a direction orthogonal to one-dimensional grooves. We
also examined which � gives the maximum anchoring
strength along the longer diagonal axis. We found that in a
certain region in the �k3 ,ks� space, �=0 �i.e., one-
dimensional grooves� yields the largest anchoring strength,
while outside it the largest anchoring strength is achieved at
finite and nonzero � that depends on k3 and ks. We presented

in Fig. 9 how to obtain largest anchoring strength for a given
nematic material.

We also investigated the anchoring of a grooved surface
possessing 2N-fold symmetry. We showed that such a sur-
face with N�3 cannot show azimuthal anchoring in the one-
constant case, K1=K2=K3, irrespective of the value of Ks �or
K24�. Although general conclusions cannot be drawn from
those small number of specific examples, it is likely that a
surface with high symmetry could not be expected to yield
azimuthal anchoring, in the case of one-constant elasticity.
On the contrary, for surfaces with lower symmetry, say, one-
dimensional grooves or rhombic grooves, one-constant elas-
ticity does not lead to the absence of azimuthal anchoring as
we have seen.

We presented a detailed argument on hexagonal grooves
�N=3� with k3�1. In most cases the surface exhibits trista-
bility, with the angle between two of the three easy axes
being � /3. The direction of the easy axes with respect to the
surface pattern is fixed �in the notation of the text, at �
=� /6, � /2, and 5� /6� when k3�1, while it depends on k3
and ks when k3�1. We also showed that six easy axes can
exist in a very narrow region in the �k3 ,ks� space. In the
cases of general N, the direction of the easy axes depends on
whether N is even or odd, as well as on k3 and ks.

We conclude this paper by emphasizing again that our
theoretical framework is applicable to a surface of arbitrary
shape, so long as the surface slope is small enough and linear
elasticity �Eq. �6�� is safely assumed. Considering the recent
growing interest in the anchoring attributable to surface ge-
ometry, and an increasing number of attempts to manufacture
grooved surfaces to achieve specific anchoring properties, we
hope that our theoretical framework presented in this paper
will help understand the properties of anchoring induced by
surface geometry in a clearer and more quantitative manner,
and propose surface shape that will lead to desired anchoring
properties.
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APPENDIX A

Here we show that W�0� for rhombic grooves, Eq. �23�, is
non-negative irrespective of the values of k3 and ks when �
	2 arcsin��2 /3�. Since W�0� is a linear function of ks�2
−ks�, and 0	ks�2−ks�	1, to show the positiveness of W�0�
for given k3 and � it is sufficient to verify W�0��0 at ks�2
−ks�=0 and 1 �or ks=0 �or 2� and 1�.

It is easily shown that �W�0��ks=0 or 2, or Eq. �25�, is not
negative irrespective of the values of k3 and � �as long as
k3�0 and 0	�	� /2 as we have postulated�. To show this
we rewrite Eq. �25� as
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�W�0��ks=0 or 2 =
1

4
KA2q3

2k3 sin2�

2 �
j=0

2

hj
�0����k3

j

�cos2�

2
+ k3 sin2�

2
5/2 , �A1�

where

h0
�0���� = − 9 sin6�

2
+ 28 sin4�

2
− 31 sin2�

2
+ 12,

h1
�0���� = sin2�

2
�18 sin4�

2
− 34 sin2�

2
+ 15 ,

h2
�0���� = 3 sin4�

2
�2 − 3 sin2�

2
 . �A2�

As Fig. 17�a� clearly indicates, h0
�0���� ,h1

�0���� ,h2
�0�����0 for

0	�	� /2, which yields �W�0��ks=0 or 2�0.
Similarly, we rewrite Eq. �26� as

�W�0��ks=1 =
1

4
KA2q3

�
j=0

2

hj
�1����k3

j

�cos2�

2
+ k3 sin2�

2
3/2 , �A3�

where

h0
�1���� = − 18 sin6�

2
+ 40 sin4�

2
− 26 sin2�

2
+ 4,

h1
�1���� = 2 sin2�

2
�18 sin4�

2
− 26 sin2�

2
+ 9 ,

h2
�1���� = 6 sin4�

2
�2 − 3 sin2�

2
 = 2h2

�0���� . �A4�

Again from Fig. 17�a�, we find that h2
�1���� and h1

�1����
are not negative for 0	�	� /2. We also find that
h0

�1�����0 when �	2 arcsin��2 /3� and h0
�1��0 when �

�2 arcsin��2 /3� �see Fig. 17�b��. Therefore, when �
	2 arcsin��2 /3�, �W�0��ks=1�0 for all k3�0. Now we have
shown that W�0��0 irrespective of the values of k3 and ks

when �	2 arcsin��2 /3�.

APPENDIX B

Here we examine how the anchoring strength W�� /2� for
rhombic grooves behaves with respect to the variation of �,
k3, and ks. As in Appendix A, W�� /2� is again a linear func-
tion of ks�2−ks�, and therefore investigation of the cases of
ks�2−ks�=0 and 1 will give sufficient information on the
qualitative behavior of W�� /2�.

From Eqs. �24� and �A1�,

�W��/2��ks=0 or 2 =
1

4
KA2q3

2k3 cos2�

2 �
j=0

2

hj
�0��� − ��k3

j

�sin2�

2
+ k3 cos2�

2
5/2 ,

�B1�

where hj
�0� has been defined in Eq. �A2�.

Since h0
�0���−���0 for 0��	� /2 �see Fig. 18�a��,

�W�� /2��ks=0 or 2 is always positive for 0��	� /2 when k3

is sufficiently small. We also find from Fig. 18�b� that
h2

�0���−���0 �or �0� when ��2 arccos��6 /3� �or
�2 arccos��6 /3��. Therefore, when ��2 arccos��6 /3�,
there exists a certain k̄3, which satisfies �W�� /2��ks=0 or 2

�0 �or �0� when k3� k̄3 �or �k̄3�. On the other hand,
�W�� /2��ks=0 or 2 is positive irrespective of the value of k3

when ��2 arccos��6 /3� �notice that h1
�0� is positive in this

range of �; see Fig. 18�b��.
Now we consider the case of ks=1. From Eqs. �24� and

�A3�, we have

�W��/2��ks=1 =
1

4
KA2q3

�
j=0

2

hj
�1��� − ��k3

j

�sin2�

2
+ k3 cos2�

2
3/2 , �B2�

where hj
�1� is defined in Eq. �A4�. We first notice from Fig.

19�a� that h0
�1��0 for 0��	� /2, which indicates that

�W�� /2��ks=1 is negative for sufficiently small k3. We also

-

(a)

(b)

FIG. 17. �Color online� �a� Plot of h0
�0� /6, h1

�0�, h2
�0�, h1

�1�, and h2
�1�

as a function of � to show their non-negativeness in the range 0
	�	� /2. �b� Plot of h0

�1� as a function of �. Note that h0
�1����

=0 at �=2 arcsin��2 /3��0.982.
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note that h2
�0��=2h2

�0���0 �or �0� when ��2 arccos��6 /3�
�or �2 arccos��6 /3��; see Fig. 19�b�. Together with h0

�1��0,
we find that when ��2 arccos��6 /3�, there exists a certain

k̄3, which satisfies �W�� /2��ks=1�0 �or �0� when k3� k̄3 �or

�k̄3�.
The behavior of �W�� /2��ks=1 in the case of h2

�0��0 �or
�2 arccos��6 /3�� depends critically on the discriminant de-
fined by

d��� � �h1
�1��� − ���2 − 4h0

�1��� − ��h2
�1��� − �� . �B3�

When

2 arccos��546 + 52�3/26� � � � 2 arccos��546 − 52�3/26�,

d����0 �see Fig. 19�b��, which implies that �W�� /2��ks=1 is
negative for all k3. When 2 arccos��546−52�3 /26���
�2 arccos��6 /3�, formally �W�� /2��ks=1=0 has real solu-
tions as an equation for k3. But since h1

�1���−���0 in this
range of � from Fig. 19�b�, those solutions are negative,
which indicates that �W�� /2��ks=1 is negative for all
k3�0. On the other hand, in the case of 0��
�2 arccos��546+52�3 /26�, d����0 and h�1���−���0
from Fig. 19�b�, which implies that �W�� /2��ks=1=0 has two
positive solutions as an equation of k3. Therefore,
�W�� /2��ks=1 is positive in a certain range of k3.

The behavior of �W�� /2��ks=1 with the variation of � is
thus summarized as follows: �i� when 2 arccos��6 /3���
	� /2, �W�� /2��ks=1 is positive when k3 is larger than
a certain value; �ii� when 2 arccos��546+52�3 /26���

�2 arccos��6 /3�, �W�� /2��ks=1 is negative for all k3�0; �iii�
when 0	��2 arccos��546+52�3 /26�, �W�� /2��ks=1 is
positive in a certain finite range of k3.

These properties of �W�� /2��ks=0 or 2 and �W�� /2��ks=1 re-
sult in the phase diagrams presented in Fig. 8.

APPENDIX C

Here we show that the anchoring energy described by Eq.
�30�, or the corresponding energy when K1�K2, satisfies
�f /��=0 at �=n� /2N �n, arbitrary integer�. It is obvious
from symmetry that f���= f��+n� /N�, and therefore it is
sufficient to show �f /��=0 at �=0 and �=� /2N.

From Eq. �14� with our choice of 	qi
, the anchoring en-
ergy is written formally as

f��� =
1

4
A2q3�

m=0

N−1

f̃�sin2�� + m�/N�� , �C1�

where

f̃�sin2 �� = K3
sin4 �

g1���
+ Ks

�1 − sin2 ��sin2 �

g1���

��2 −
Ks

K3

g1���g2��� + sin2 � − 1

sin2 �
 , �C2�

although the explicit form of f̃ is not important here. Note
that g1��� and g2��� are rewritten as a function of sin2 �.

(a)

(b)

-

-

-

-

-

-

-

-

-

FIG. 19. �Color online� Plots of �a� h0
�1���−�� and �b� h1

�1���
−��, h2

�0���−��, and d��� as a function of �. Note that h2
�0���−��

becomes zero at �=2 arccos��6 /3� and that d���=0 at �

=2 arccos��546±52�3 /26�.

-

-

-

(a)

(b)

FIG. 18. �Color online� Plots of �a� h0
�0���−�� and �b� h1

�0���
−�� and h2

�0���−�� as a function of �. Note that h2
�0���−�� be-

comes zero at �=2 arccos��6 /3�.
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The differentiation of Eq. �C1� with respect to � yields

f���� �
� f���

��
=

1

2
A2q3�

m=0

N−1

h̃�� + m�/N� , �C3�

where

h̃�� + m�/N� � f̃��sin2�� + m�/N��sin�� + m�/N�

�cos�� + m�/N� , �C4�

in which f̃��x� implies df̃�x� /dx.
It is easily shown from Eq. �C4� that h�m� /N�=−h��N

−m�� /N� ��=0�. Then from Eq. �C3�, we obtain

f��0� =
1

2
A2q3�h̃�0� �N, odd� ,

�h̃�0� + h̃��/2�� �N, even� .
� �C5�

It is easily found from Eq. �C4� that h̃�0�= h̃�� /2�=0, and
therefore we have shown f��0�=0.

When �=� /2N, Eq. �C4� yields h̃�� /2N+m� /N�
=−h̃�� /2N+ �N−m−1�� /N�, which results directly in
f��� /2N�=0 for even N. For odd N, the only term that does
not cancel out is the one with m= �N−1� /2, and therefore

f��� /2N�= 1
2A2q3h̃�� /2�=0. Finally we have shown

f��� /2N�=0.

APPENDIX D

To derive Eqs. �33� and �34�, using the expansion

1 /�1+x=��=0

 �−1��

�2�−1�!!

�!2� x� �see, e.g., p. 25 of Ref. �37��,
we rewrite Eq. �30� as

f =
1

4
KA2q3�

�=0




�− 1�� �2� − 1� ! !

� ! 2� �k3 − 1��

��ks�2 − ks��
m=0

N−1

sin2��+1��� +
m�

N


+ �k3 − ks�2 − ks���
m=0

N−1

sin2��+2��� +
m�

N
� . �D1�

We first show that for a positive integer l with l	N−1,

�
m=0

N−1

cos 2l�� +
m�

N
 = 0. �D2�

Noticing the identity �k=0
n−1cos�x+ky�=cos�x+ n−1

2 y�sinny
2 /

sin y
2 �see, e.g., p. 35 of Ref. �37��, we obtain

�
m=0

N−1

cos 2l�� +
m�

N
 = cos�2l� +

�N − 1�l�
N

 sin l�

sin
l�

N

.

�D3�

For positive l with l	N−1, 0� l� /N�� and therefore
sin l�

N �0. On the other hand, sin l�=0, which yields Eq.
�D2�.

We further show that

�
m=0

N−1

sin2��� +
m�

N


= �independent of � �� 	 N − 1� ,

N

22N�2N

N
 + �− 1�N N

22N−1cos 2N� �� = N� . �
�D4�

For the derivation of Eq. �D4�, one can use is the following
identity �see, e.g., p. 30 of Ref. �37�� together with Eq. �D2�,

�
m=0

N−1

sin2��� +
m�

N


=
N

22��2�

�
 +

1

22�−1 �
�=0

�−1

�− 1��−��2�

�


��
m=0

N−1

cos�2�� − ���� +
m�

N
� . �D5�

Equations �D1� and �D4� yield Eq. �33� for ks�2−ks��1 and
Eq. �34� otherwise.
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